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Abstract

The stress _eld due to self!equilibrating loading on the inner or outer arc of a plane strain elastic wedge
sector is a}ected by two agencies] a geometric e}ect of increasing or decreasing area\ and decay as anticipated
by Saint!Venant|s principle "SVP#[ When the load is applied to the inner arc the two e}ects act in concert ^
however\ when the load is applied to the outer arc the two e}ects act in opposition and for a wedge angle in
excess of the half!space\ 1a×p\ for the symmetric case\ and for 1a× 0[32p for the asymmetric case\ the
geometric e}ect is dominant over Saint!Venant decay and stress level increases as one moves away from the
outer arc\ con_rming the inapplicability of SVP[ This is additional to previously reported di.culties at these
angle when a self!equilibrated load on the inner arc decays at the same rate as does a concentrated moment\
and is explained in terms of the interaction of a near!_eld geometric e}ect and a far!_eld stress interference
e}ect at a traction!free edge[ For wedge angle 1a�1p the unique Modes I and II inverse square root stress
singularities at the crack tip\ which are at the heart of Linear Elastic Fracture Mechanics "LEFM#\ can be
attributed to this inapplicability for just one symmetric and one asymmetric eigenmode[ Þ 0887 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

The classical Carothers "0801# solution for a wedge subjected to a concentrated moment at the
apex shows pathological behaviour at the critical wedge angle 1a � 1a� ¼ 0[32p ¼ 146> ^ this well
known paradox has been investigated by many researchers "see Dundurs and Markensco} "0878#
for a review of the literature#[ In a recent paper\ Markensco} "0883# attributes this breakdown in
the solution to a failure of Saint!Venant|s principle "SVP#\ and describes three methods of applying
the concentrated moment\ these being

"a# the original Carothers solution in which the truncated wedge experiences a moment on the
inner arc ri and then allowing ri : 9[
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"b# a _rst alternative\ due to Sternberg and Koiter "0847#\ in which the moment is applied on the
~ank of the wedge over some length a\ and then setting a : 9[

"c# a second alternative\ originally due to Neuber "0852#\ in which the moment is applied by means
of a twisted plug of vanishing radius applied at an interior point approaching the apex[

All three cases have the same far!_eld solution for wedge angles smaller than the half!space\ that
is 1a ³ p ^ this is as it should be if SVP applies[ For the half!space and at the critical wedge angle
1a�\ SVP is known to be inapplicable in the sense that symmetric and asymmetric self!equilibrating
loads\ respectively\ can decay at the same rate as does a concentrated moment applied at the apex\
the latter due to di}usion of stress into a divergent cross!sectional area[ As indicated by Sternberg
and Koiter "0847#\ while this may not be in con~ict with a rigorous statement of the principle\ it
is in striking contradiction to a conventional interpretation of SVP[ As will be seen\ further
di.culties in the application of SVP are evident when one considers self!equilibrated loading on
the outer arc[

Consider an incomplete elastic ring with loading applied to the inner and outer arcs r � a\ r � b\
respectively\ while the ~anks u � 2a are free of traction[ Suppose\ _rstly\ that a self!equilibrated
load is applied to the arc r � a and b : � ^ intuitively one might expect the increasing area into
which the stress is di}using "that is\ a geometric e}ect# to enhance the rate of decay of SVP when
compared with the plate of constant thickness "that is the PapkovitchÐFadle solution\ equivalent
to a � 9#[ However in one of the few works to consider explicitly the application of SVP to the
wedge\ Horvay "0846# employed an approximate variational approach\ and concluded that the
converse was true\ at least for wedge angle 1a ¾ p\ and that attenuation was fastest when the edges
of the wedge are parallel\ {{for there occurs more interference between the stresses\ as they are
re~ected from the free edges\ than in any other case||[

This unexpected conclusion is here re!examined\ and by expressing decay in terms of "distance
from the loaded arc:loaded arc len`th#\ which conforms with the spirit of SVP\ it is found that for
all wedge angles the rate of decay is initially greater than for the strip\ but as one moves away
from the loaded edge so the rate of decay reduces ^ thus\ if stress attenuation to 19) of the
magnitude on r � a is chosen as the criterion of rapidity\ then decay is more rapid in the case of
the wedge[ On the other hand\ if one chose stress attenuation to 1) then decay is more rapid in
the case of parallel sides[ "Of course one is attempting to compare exponential decay in the case
of parallel sides with power law decay in the case of the wedge\ so di}erences are to be expected ^
expressed in the above manner\ the decay characteristics of the wedge and the plate are surprisingly
similar[# One is led therefore to the conclusion that stress attenuation due to increased area "the
geometric e}ect# is more important in the near!_eld close to the loaded arc\ but of less importance
in the far!_eld\ when the free!edge e}ect of stress component interference becomes dominant[

Suppose\ instead\ that the self!equilibrated load is applied to the outer arc r � b ^ now the
geometric e}ect of decreasing area would intuitively suggest an increase in stress "as is the case
when the applied load constitutes a force or moment resultant#\ whereas the converging traction!
free edges u � 2a should be expected to enhance attenuation[ If\ as suggested above\ the free edge
e}ect is dominant over the geometric e}ect in the far!_eld\ this would lead to the further unexpected
result that decay to the 1) level is more rapid than for parallel sides ^ this is found to be the case
for small wedge angles[ However this argument must be quali_ed] for a self!equilibrated load on
the arc r � b\ one may only move radially a maximum distance b from the loaded arc ^ if the wedge



N[G[ Stephen\ P[J[ Wan` : International Journal of Solids and Structures 25 "0888# 234Ð250 236

angle is small then this distance may be a su.ciently large multiple of the loaded arc length "which
is 1ab# for the far!_eld e}ect to be dominant[ On the other hand when wedge angle is large\ then
b may be only a small proportion of the loaded arc length\ in which case there may not be a far!
_eld\ and the near!_eld geometric e}ect would then be dominant\ and stress would increase as
one moves away from the loaded arc[ For example\ when a � p:3\ the maximum radial span
b � 9[5255×"loaded arc len`th#\ and in the extreme case of 1a � 1p\ then "b:loaded arc
len`th# � 0:"1p# ¼ 9[05 ^ in short\ the geometry would not allow SVP to act[

Deliberating further\ it seems reasonable to question how the two e}ects depend upon the wedge
angle[ The stresses sr and tru on the generic arc\ r � constant\ act over area 1ra "per unit depth#
while the self!equilibrated load is applied over area 1aa "or 1ba# ^ thus\ the ratio of loaded area to
the generic area varies in inverse proportion to the radius r\ and one might suppose that the
geometric e}ect is independent of the wedge angle 1a[ Simultaneously the length of the traction!
free edges\ "b−a#\ is independent of wedge angle\ but as a increases so these traction!free edges
must in~uence the stress on an increasing generic area 1ra\ again suggesting that the free!edge
e}ect will become of less importance as wedge angle increases[

Thus suppose\ again\ that the self!equilibrated load is applied on the arc r � b] for small wedge
angles\ attenuation due to free!edges should be greater than any stress increase due to area
reduction\ so stress levels would decrease as one moved away from the loaded arc\ as is anticipated
by SVP[ As wedge angle increases\ with the free!edge e}ect reducing in importance\ then the
constant geometric e}ect may become dominant and the self!equilibrated load would not decay
but rather grow as one moves away from the loaded arc r � b[ As will be seen this does indeed
occur and the phenomenon of singular stress at a re!entrant corner may be attributed to this
inapplicability of SVP] symmetric singular stress _elds occur for 1a × p\ whereas asymmetric
singular _elds occur for 1a × 1a� ¼ 0[32p[

For the largest possible wedge angle\ 1a � 1p\ the problem becomes that of the stress _eld in
the vicinity of a crack tip\ which is the discipline of LEFM\ _rst treated by Williams "0846#
using the Airy stress function approach also employed here ^ in LEFM the plane symmetric and
asymmetric stress distributions\ which are the same for all crack tips*only the magnitudes\ the
well known stress intensity factors\ depend on the geometry of the structure and the magnitude of
the applied load* are described as Mode I "opening# and Mode II "sliding#\ respectively[ It will
be seen that these unique crack tip distributions may be attributed to SVP inapplicability for just
one particular eigenmode "corresponding to one particular stress distribution#[ A similar situation
occurs for Mode III "tearing#\ this simpler anti!plane problem having been considered by Stephen
and Wang "0885#[

For completeness\ a brief theoretical treatment is provided ^ the major contribution in the present
work is a re!examination and interpretation of the predictions of that theory[

1[ Theory

1[0[ General solution

Consider the plane strain isotropic elastic wedge occupying the region

a ¾ r ¾ b\ −a ¾ u ¾ ¦a\ −� ³ z ³ �\ "0#
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where r\ u and z are cylindrical coordinates ^ body forces are assumed absent and the ~anks of the
wedge\ u � 2a\ are free of traction[ The Airy stress function must satisfy the biharmonic equation

93f � 9\ "1#

and is taken in the form

f �"r:r9#−lf"u# �"r:r9#−l exp"iku#\ "2#

where i �"−0#0:1\ and r9 is an arbitrary constant having dimension length ^ eqn "1# leads to the
characteristic equation

ðk3−k1"l1¦"l¦1#1#¦l1"l¦1#1Ł � 9\ "3#

which has solutions

k � 2l\ 2"l¦1#[ "4#

The stress function then becomes

f �"r:r9#−l ðC0 cos lu¦C1 sin lu¦C2 cos"l¦1#u¦C3 sin"l¦1#uŁ\ "5#

where C0\1\2\3 are constants[ Accordingly the stress components are

sr � 1f:r 1r¦11f:r1 1u1

� −"r:r9#−l−1"l¦0#ðC0l cos lu¦C1l sin lu¦C2"l¦3# cos"l¦1#u

¦C3"l¦3# sin"l¦1#uŁ:r1
9\

su � 11f:1r1

� "r:r9#−l−1"l¦0#ðC0l cos lu¦C1l sin lu¦C2l cos"l¦1#u¦C3l sin"l¦1#uŁ:r1
9\

tru � −"1:1r#"1f:r 1u#

� "r:r9#−l−1"l¦0#ð−C0 l sin lu¦C1l cos lu−C2"l¦1# sin"l¦1#u

¦C3"l¦1# cos"l¦1#uŁ:r1
9[ "6#

The displacement components are obtained from the strains by integration as

ur � "0¦n#"r:r9#−l−0 ðC0l cos lu¦C1l sin lu¦C2"v¦l# cos"l¦1#u

¦C3"v¦l# sin"l¦1#uŁ:Er9\

uu � "0¦n#"r:r9#−l−0 ðC0l sin lu−C1l cos lu¦C2"l¦1−v# sin"l¦1#u
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−C3"l¦1−v# cos"l¦1#uŁ:Er9\ "7#

where v � 3:"0¦n#\ n is Poisson|s ratio\ and E is Young|s modulus[

1[1[ Symmetric loadin`

Consider _rst the symmetric case and impose boundary conditions

su � tru � 9 on u � a\ and uu � 9 on u � 9[ "8#

The constants C1 and C3 are zero and this leads to the eigenequation

"l¦0# sin 1a¦sin 1"l¦0#a � 9[ "09#

The stresses and displacements may then be obtained by writing

C0 � −C2

"l¦1# sin"l¦1#a
l sin la

"00#

in eqns "6# and "7#[

1[2[ Asymmetric loadin`

For the asymmetric case

uu"u# � uu"−u#\ or ur � 9 on u � 9\ "01#

from which constants C0 and C2 are zero\ and the traction!free condition

su � tru � 9 on u � a\ "02#

leads to the eigenequation

"l¦0# sin 1a−sin 1"l¦0#a � 9[ "03#

The stresses and displacements may then be obtained by writing

C1 � −C3

sin"l¦1#a
sin la

"04#

in eqns "6# and "7#[
Note that the asymmetric eigenequation "03# is satis_ed for all wedge angles by the eigenvalue

l � −1 ^ the stresses are zero and the displacement components indicate a "asymmetric# rigid body
rotation only about the origin[ However\ as will be seen in Section 3\ there are further solutions
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valid only at the critical semi!wedge angle a � a�\ for the asymmetric case\ and valid only at angles
a � p:1 and p\ for the symmetric case ^ in both cases\ the stress _elds are self!equilibrating and are
independent of radius\ indicating SVP inapplicability[

Both eigenequations "09# and "03# are satis_ed for all wedge angles by the eigenvalue l � −0 ^
the stresses are again zero\ and the displacement components reduce to ur � 3C2 cos u:Er9\
uu � −3C2 sin u:Er9\ which is a "symmetric# rigid body displacement in the x!direction\ and
ur � 3C3 sin u:Er9\ uu � 3C3 cos u:Er9\ which is a "asymmetric# rigid body displacement in the y!
direction[ As will be seen in Section 2\ the root l � −0 is also associated with a simple radial stress
distribution[

2[ Radial variation in stress

2[0[ Diffusion of stress resultants

Firstly some well known "see Massonnet\ 0851# stress distributions for the wedge are noted\ for
which the applied load constitutes a stress resultant ^ radial variation in stress level is then purely
a geometric e}ect of di}usion of stress into a divergent or convergent area[

2[0[0[ Diffusion of force
Both eigenequations "09# and "03# are satis_ed by l � −0 for all wedge angles ^ besides the rigid

body translations already noted\ from eqn "4# the roots are

k � 30\ 20\ "05#

and the multiplicity indicates that the stress function should take the form

f �"r:r9# ð"C0¦C1u# sin u¦"C2¦C3u# cos uŁ\ "06#

where C0\1\2\3 are constants[ This is the Flamant solution and gives rise to a distribution of purely
radial stress\ both symmetric "C3 � 9# and asymmetric "C1 � 9#\

sr � 1"C1 cos u−C3 sin u#:r9r\

su � 9\

tru � 9[ "07#

This distribution on an arc of constant radius may constitute a force resultant per unit depth0 in
the x!direction "the symmetric case# given by

0 The force resultants are Rx � −r Ða
−a"sr cos u−tru sin u# du\ Ry � −r Ða

−a"sr sin u¦tru cos u# du[



N[G[ Stephen\ P[J[ Wan` : International Journal of Solids and Structures 25 "0888# 234Ð250 240

Rx � −C1"1a¦sin 1a#:r9

and a shearing force in the y!direction "the asymmetric case#

Ry � C3"1a−sin 1a#:r9\

together with a bending moment

M � rRy[

Thus\ for a compressive force Rx in the x!direction the radial stress is

sr � −1Rx cos u:"r"1a¦sin 1a## "08#

which agrees with the intuitive expectation that since stress is force:area\ and the area carrying the
load increases linearly with radius\ so stress should vary inversely with the radius[ Similarly the
bending moment produced by a force Ry in the y!direction gives the radial stress

sr � −1Ry sin u:"r"1a−sin 1a## ^ "19#

this variation is consistent with the expectation that for a beam of linearly varying depth\ where
the second moment of area varies as r2\ and the bending moment varies linearly with r\ so the
bending stress along a _bre de_ned by u � constant "whose distance from the neutral axis varies
linearly with r# should be inversely proportional to radius[

2[0[1[ Diffusion of concentrated moment
The asymmetric eigenequation "03# is satis_ed by l � 9 for all a\ which is a double root ^ the

stress function should then have the form

f � C0¦C1u¦C2 cos 1u¦C3 sin 1u[ "10#

The stresses are

sr � −3"C2 cos 1u¦C3 sin 1u#:r1\

su � 9

tru � "C1−1C2 sin 1u¦1C3 cos 1u#:r1[ "11#

The constant C2 is immediately zero from the requirement of asymmetry "this is also the condition
that resultant Rx should be zero#\ while the relationship C1 � −1C3 cos 1a arises from the traction!
free condition tru � 9 on u � 2a "this is also the condition that resultant Ry should be zero#[ The
distribution becomes

sr � −3C3 sin 1u:r1\
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su � 9\

tru � 1C3"cos 1u−cos 1a#:r1[ "12#

The constant C3 is evaluated by requiring that the moment about the origin r � 9 "i[e[
M � r1 Ða

−a tru du# should be equal to the applied moment M\ which gives

M � 1C3"sin 1a−1a cos 1a#[ "13#

The stresses are then

sr � −1M sin 1u:"r1"sin 1a−1a cos 1a##

su � 9\

tru � M"cos 1u−cos 1a#:"r1"sin 1a−1a cos 1a##\ "14#

which is known in the literature as the Carothers solution ^ the radial variation is consistent with
the expectation that bending stress along a _bre u � constant\ for a beam of linearly varying depth\
should vary as r−1 for pure bending[ A discussion of the breakdown of this solution at the critical
wedge angle 1a� ¼ 0[32p\ attempts at its repair\ and the relationship with SVP\ is given in Section
3[

2[1[ Decay of self!equilibrated loadin`

Now consider the locus of roots of the symmetric eigenequation "09#\ the real parts of which are
shown in Fig[ 0[ Firstly one notes that the branches are symmetric about l � −0 ^ thus for a � p:5\
the smallest "complex# roots are l � 2[948220[8419i and the corresponding mirror image branch
has l � −4[948220[8419i[ Secondly\ it is noted that stress varies with radius as "r:r9#−l−1 ^ thus\
the root l � −1 corresponds to a stress distribution independent of radius[ For roots in which the
real part R"l# × −1\ stresses decrease as radius increases\ and this corresponds to decay of a self!
equilibrated loading on the inner arc r � a[ Similarly for roots having R"l# ³ −1\ stresses decrease
as radius decreases which\ in the main\ corresponds to decay of a self!equilibrated loading on the
outer arc r � b[

2[1[0[ Decay from inner arc r � a
Consider the decay of stress away from a self!equilibrated load on the inner arc r � a\ and in

particular the minimum rate of decay which validates SVP and indicates the maximum depth of
penetration of the stress[ In order to judge the e}ect of the divergent area\ and also to re!examine
the Horvay "0846# conclusion\ the present results are compared with stress decay for the plane
strain semi!in_nite plate\ the well known PapkovitchÐFadle solution "see Timoshenko and Goodier
"0869#\ article 15# where\ for the symmetric case\ the minimum rate of decay is
exp"−1[0950z:c# � exp"−3[1011z:t# ^ here t � 1c is the plate thickness over which the self!equi!
librated load is applied\ and z is distance from the loaded edge[ To facilitate comparison\ the wedge
power law decay must be expressed in a similar vein ^ thus\ noting that distance from the loaded
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Fig[ 0[ Locus of roots] symmetric case[ Solid and dotted lines represent real and complex roots respectively[
The lines l � 9 and l � −1 are not roots\ but have been inserted as a grid reference[

arc\ "r−a#\ takes the place of z\ and that plate thickness t is e}ectively replaced by inner arc length
"s � 1aa#\ then the power law variation of stress level with radius\ i[e[ "r:r9#−l−1 may be expressed
as

00¦1a 0
distance from loaded arc

arc len`th 11
−l−1

\

where the arbitrary constant r9 has been set equal to the inner arc radius a[The decay characteristics
are shown in Fig[ 2\ together with the di}usion of the symmetric stress resultant\ that is a tension\
and it is seen that for any given wedge angle the self!equilibrated load decays more rapidly than
does a tensile force due to di}usion into the divergent area\ as should be the case according to
conventional interpretation of SVP ^ by expressing stress variation in this way\ the decay charac!
teristics for all wedge angles fall into a fairly tight band[ For all wedge angles\ the rate of decay is
initially more rapid than for the plate\ suggesting that the geometric e}ect is more important in
the near!_eld[ However as one moves away from the loaded arc\ so the decay rate becomes less
than the exponential decay of the plate\ as presaged in the Introduction[ These di}erences in the
decay characteristics of self!equilibrated loading\ and in particular the fact that divergent area
enhances decay in the near _eld\ when compared with the exponential decay characteristic\ can be
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Fig[ 1[ Locus of roots] asymmetric case[ Solid and dotted lines represent real and complex roots respectively[
The line l � −1 is not a root\ but has been inserted as a grid reference[

Fig[ 2[ Decay of symmetric load\ both self!equilibrating and tension\ from the inner arc r � a[ Tensile forces
are annotated according to the wedge semi!angle a[
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Fig[ 3[ Decay of self!equilibrated symmetric load from inner arc r � a[

seen more clearly in Fig[ 3 where log"stress# is shown together with the 1) level\ which in the
study of dynamics is taken as the duration of an exponential decay\ exp"−t:t#[ "This is normally
taken as four time constants\ 3t\ when stress level has reduced to 0[7)[# Surprisingly\ the minimum
decay rate in the far _eld occurs for the critical angle a� rather than for a � p[

Di}erences in decay characteristic\ over the range of possible wedge angle\ can also be seen in
Fig[ 4\ which shows the maximum depth of penetration of the self!equilibrated load\ that is the
number of arc lengths one must move away from the loaded arc for stress to decay to the 1) level[
"For parallel sides\ z � 9[8176t for the symmetric case ^ that is\ stress will decay to 1) of edge
value at a distance of 9[8176×plate thickness[# It is seen that the depth of penetration increases
for all non!zero a\ although the wedge angle must become large before the increase is signi_cant[
Thus\ at a � p:2 the penetration depth increases by approximately 29) over the plate value[ For
the symmetric case\ the curve shows a discontinuity at point A\ a ¼ 62>\ when the previously
complex smallest root becomes real at the bifurcation point A on Fig[ 0[ For a × 62> the smallest
root in Fig[ 0 initially reduces rapidly\ resulting in less rapid stress decay and increasing depth of
penetration of the self!equilibrated edge load[ Returning to Fig[ 4 it is seen that the maximum
depth of penetration "at just under 1[4×arc length# occurs for the critical wedge angle a�[ As a is
increased beyond this critical angle\ the maximum penetration depth then decreases to a value
1[9998×arc length for a � p[ Also shown in Fig[ 4 is the depth of penetration "using the same 1)
criterion# of a bending moment\ and it is seen that conventional interpretation of SVP applicability
extends only to the half!space\ a � p:1\ when the {{slowest|| symmetric self!equilibrated load
penetrates to the same depth as does the "asymmetric# bending moment\ at point B[

Next consider the asymmetric case] the locus of roots\ Fig[ 1\ is again symmetrical about l � −0 ^
thus\ for a wedge having a � p:2 the smallest "complex# root is l � 1[529629[7701i\ and the
mirror image branch has l � −3[529629[7701i[ Again the rate of stress decay away from the
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Fig[ 4[ Stress penetration from inner arc r � a] number of arc lengths "s � 1aa# to decay to 1)[

loaded arc is compared with the PapkovitchÐFadle solution for the plate\ which has slowest decay
as exp"−2[6377z:c# � exp"−6[3865z:t#[ Again the depth of stress penetration\ Fig[ 4\ increases
for all a\ and the wedge angle 1a must become large before the increase is signi_cant[ Now there
is a discontinuity at point C\ a ¼ 68>\ where the smallest complex root becomes real at the
bifurcation point C on Fig[ 1[ The penetration depth then increases almost linearly with a to the
value 1[9998×arc length for a � p\ which is identical to the penetration depth for the symmetric
case\ both cases having smallest root l � −0:1 at a � p[ Now it is seen that the depth of penetration
of the {{slowest|| asymmetric self!equilibrated stress is the same as that of the bending moment at
point D\ Figs 1 and 4\ the critical wedge angle 1a�\ again indicating SVP inapplicability according
to conventional interpretation[ The actual decay of stress is shown in Fig[ 5\ together with the
di}usion of the concentrated moment ^ as with the symmetric case\ the geometric e}ect of divergent
area leads to a more rapid decay in the near!_eld\ close to the loaded arc\ when compared with
the exponential decay characteristic of the plate ^ in contrast with the symmetric case\ the decay of
a moment due to di}usion into the diverging area can be more rapid than the decay of a self!
equilibrating load[ Thus in Fig[ 5\ the line annotated as 017[6> is both Saint!Venant decay and
di}usion of the moment\ and for the case a � p the self!equilibrated load "annotated from below#
decays less rapidly than the moment "annotated from above# di}uses[ The band of decay charac!
teristics of the self!equilibrated load is now not so tight as for the symmetric case[

Thus far\ discussion has concentrated on the decay of stress away from a self!equilibrated load
on the arc r � a\ associated with the positive "real# roots l in Figs 0 and 1[ Intuitively one expects
such decay by virtue of two agencies] the _rst is the increased area which carries the self!equilibrated
load as one moves away from the arc r � a\ as seen previously for those stress distributions which
do constitute a force or moment resultant\ Section 2[0[ The second agent is the traction!free edge
e}ect\ and for a self!equilibrated load on the arc r � a both these e}ects work in concert to give
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Fig[ 5[ Decay of asymmetric load\ both self!equilibrating and concentrated moment\ from inner arc r � a[
Moments are annotated from above according to the wedge semi!angle a[

the overall decay characteristic ^ the manifestation of SVP inapplicability is that a self!equilibrated
load can decay at the same rate as a bending moment di}uses into a divergent area[

2[1[1[ Decay from the outer arc r � b
Suppose\ instead\ that the self!equilibrated load is applied on the arc r � b] the two e}ects no

longer work together\ but rather in opposition[ Thus\ as one moves away from the loaded arc "that
is\ as radius decreases# so the geometric e}ect of reduced area should be expected to give an
increase in stress level "this is the case for distributions constituting a resultant\ Section 2[0#\
whereas SVP "the free!edge e}ect# would suggest that stress levels should decrease[ Since these two
e}ects act in opposition one should expect less rapid decay away from the loaded arc in the case
of a self!equilibrated load ^ thus\ consider the symmetric case\ a � p:5\ when the smallest root for
a self!equilibrated load on r � a has R"l# � 2[9482 and stress varies with radius as r−l−1 � r−4[9482[
For a load on r � b\ the image root of Fig[ 0 has R"l# � −4[9482 when stress varies as
r−l−1 � r2[9482[ Thus\ the theoretical predictions agree with one|s intuitions] stresses due to a self!
equilibrated load decay as one moves away from the loaded arc r � b\ as SVP says they should\
but the decay is less rapid due to the geometric e}ect of reducing area[

Turning to Fig[ 6\ it is seen that for the small wedge angles shown\ a ¾ 04>\ decay to 1) is more
rapid than for the case of parallel sides\ as one would expect from an enhanced far!_eld free!edge
e}ect\ although in the near!_eld decay is less rapid than exponential\ as one would expect from
the convergent area[ However\ as wedge angle increases one would expect the far!_eld dominance
to become less important] thus\ for a wedge angle a � p:5\ say\ it is only possible to move a
maximum radial distance of 9[844×"loaded arc length# from the loaded arc\ and it is natural to
ask whether the near!_eld increase in stress level due to convergent area is ever su.ciently large
to overcome the far!_eld stress reduction if\ indeed\ there is a far!_eld[ Again note that stress is
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Fig[ 6[ Decay of self!equilibrated symmetric load from outer arc r � b\ for small semi!wedge angles a[

independent of radius if R"l# � −1 ^ if R"l# ³ −1 then stress level will decay as one moves away
from the arc r � b\ and SVP is applicable\ although the rate of decay may not be rapid[ This is
true for all of the mirror image root loci except for the {{slowest|| decay branch which has
R"l# − −1 for a − p:1 for the symmetric case\ Fig[ 0\ and R"l# −−1 for a − a� for the asymmetric
case\ Fig[ 1[ For these portions of just two decay branches\ the geometric e}ect is dominant ^ thus\
stress levels are increasing due to convergent area more rapidly than they are decreasing by virtue
of the free!edge e}ect\ indicating the anticipated inapplicability of SVP[

In the case of a � p\ which is the idealised unloaded crack of LEFM\ both the symmetric and
asymmetric cases have l � −2:1\ which corresponds to the familiar stress _eld in the vicinity of
the crack tip\ when the constants C2 and C3 are related to the stress intensity factors K0 and K00\
respectively[1 Suppose an arbitrary self!equilibrated load is applied to the outer arc ^ since this load
is periodic in u\ it may be expanded as the summation of stress terms as in eqn "6# with l � −2:1\
−1\ −4:1\ −2\ etc[ For all these terms\ with the exception of l � −2:1\ the decay of SVP is
dominant over the geometric e}ect\ and such stresses would not reach the crack tip[ Thus\ whatever
the distribution on r � b\ the crack tip distribution has l � −2:1\ and the unique Mode I and
Mode II stress distributions in the vicinity of the crack tip\ which is at the heart of LEFM\ may be
attributed to SVP inapplicability for just one eigenmode for each of the symmetric and asymmetric
cases ^ the only remaining question is the intensity of the applied stress distribution on the arc
r � b\ which in turn de_nes the stress intensity factor of LEFM[

3[ The wedge paradox

At _rst sight eqns "14# suggest that the stresses become everywhere in_nite for the wedge semi!
angle a� which satis_es

1 The relationships are K0 � C2"1p#0:1r−2:1
9 \ K00 � −C3"1p#0:1r−2:1

9 [
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sin 1a�−1a� cos 1a� � 9\ a� ¼ 9[604p ¼017[6>[ "15#

This {{pathological|| behaviour of the Carothers solution has been considered by numerous authors\
and many have concurred with the view that the stresses sr and tru theoretically become in_nitely
large when a � a� ^ more circumspect analysis has shown that the stresses according to eqns "14#
are merely unde_ned as\ from eqn "13#\ it is clear that at this particular wedge angle the bending
moment M is zero\ and loading on the arc r � a is self!equilibrating[ Sternberg and Koiter "0848#\
and later Markensco} "0883#\ recognised this as a breach of SVP applicability since\ for angles
greater than the critical angle\ a self!equilibrated loading on the arc r � a can decay less rapidly
than the decay "or\ more precisely\ the di}usion into a diverging area# of a bending moment[

Various authors "Neuber\ 0852 ^ Dempsey\ 0870 ^ Ting\ 0873\ 0874 ^ Leguillon\ 0877# have
attempted to repair the Carothers solution at\ and close to\ the critical wedge angle by the
introduction of a logarithmic stress singularity ^ while the resulting stress _eld may constitute a
moment at the critical angle\ it has been remarked by Markensco} "0883# that it is {{de_cient in
the sense that it gives in_nite moment resultant on arcs of arbitrary length at in_nity[ Only on the
total wedge angle the resultant moment is M "being the _nite di}erence of two in_nities#[||

However\ what these authors have not considered is the wider inapplicability of SVP\ in relation
to loading on the outer arc r � b\ in particular the case of l � −1[ The asymmetric eigenequation
"03# is satis_ed identically\ while eqns "6# and "7# reveal nothing other than the rigid body
displacements ^ however\ the characteristic eqn "3# has roots k � 29\ 21\ which are identical to
those for the concentrated moment problem\ Section 2[0[1\ in which case the resulting stress
function

f �"r:r9#1 ðC0¦C1u¦C2 cos 1u¦C3 sin 1uŁ\ "16#

has identical u!dependence ðcf eqn "10#Ł[ The traction!free condition tru � 9 on u � 2a leads
to C2 � 9\ and C1 � −1C3 cos 1a\ while the condition su � 9 on u � 2a leads to C0 � 9\ and
C1a � −C3 sin 1a[ These relationships between C1 and C3 require either C1 � C3 � 9\ or
1a cos 1a−sin 1a � 9\ which is satis_ed by a � a�[ Thus\ the root l � −1 leads to the self!
equilibrated stress distribution

sr � −1C3"1u cos 1a�¦sin 1u#:r1
9\

su � −1C3"1u cos 1a�−sin 1u#:r1
9\

tru � −1C3"cos 1u−cos 1a�#:r1
9\ "17#

which is valid only for the critical angle\ a� ^ since the components are independent of the radial
coordinate r\ one has an asymmetric self!equilibrated load which can be present on both inner and
outer arcs\ and which does not decay in either radial direction\ marking the inapplicability of SVP[
This _eld has previously been derived by Ting "0873#\ but its signi_cance in relation to SVP was
not noted[

For the symmetric case\ Fig[ 0\ the root l � −1 is valid only at a � p:1 and p\ and gives the
stress _eld
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sr � −1C2"2cos 1u−0#:r1
9\

su � 1C2"02cos 1u#:r1
9\

tru � 21C2 sin 1u:r1
9\ "18#

where the positive and negative signs pertain to a � p:1 and p\ respectively[ In the case of the half!
space\ a � p:1\ one again has a self!equilibrating stress _eld which is independent of radius[ For
the crack problem\ a � p\ these components are often overlooked for the symmetric case\ or
incorrectly assumed to be present in the asymmetric case\ and are of relevance in the collocation
method for determination of the stress intensity factor[

4[ Conclusions

The decay of self!equilibrated loading applied to the inner or outer arc of a plane strain elastic
wedge has been considered in terms of a near!_eld geometric e}ect\ and a far!_eld stress interference
e}ect at a traction!free edge[ For loading on the inner arc\ the two e}ects act in concert ^ however
for loading on the outer arc the two e}ects act in opposition\ with the far!_eld e}ect becoming less
in~uential as wedge angle increases[ Saint!Venant|s principle becomes inapplicable for a wedge
angle in excess of the half!space\ when

"a# symmetric self!equilibrated loading on the inner arc can decay less rapidly than does a bending
moment\ the latter due to stress di}usion into a divergent area[

"b# symmetric self!equilibrated loading on the outer arc can increase as one moves away from the
loaded arc\ the geometric e}ect being dominant[

For the wedge angle 1a � 1p the unique Modes I and II inverse square root stress singularities at
the crack tip\ which are at the heart of LEFM\ can be attributed to an inapplicability of Saint!
Venant|s principle for just one symmetric and one asymmetric eigenmode[

References

Carothers\ S[D[\ 0801[ Plane strain in a wedge[ Proceeding of the Royal Society of Edinburgh 12\ 181Ð295[
Dempsey\ J[P[\ 0870[ The wedge subjected to tractions] a paradox resolved[ Journal of Elasticity 00\ 0Ð09[
Dundurs\ J[\ Markensco}\ X[\ 0878[ The SternbergÐKoiter conclusion and other anomalies of the concentrated couple[

Transactions ASME Journal of Applied Mechanics 45\ 139Ð134[
Horvay\ G[\ 0846[ Saint!Venant|s principle] a biharmonic eigenvalue problem[ Transactions of ASME Journal of

Applied Mechanics 13\ 270Ð275[
Leguillon\ D[\ 0877[ Sur le moment ponctuel applique� a� un secteur] le paradoxe de SternbergÐKoiter[ C[R[ Acad[ Sci[

Paris\ series II\ 296\ 0630Ð0635[
Markensco}\ X[\ 0883[ Some remarks on the wedge paradox and Saint!Venant|s principle[ Transactions ASME Journal

of Applied Mechanics 50\ 408Ð412[
Massonnet\ C[\ 0851[ Two!dimensional problems[ In Handbook of Engineering Mechanics\ chap[ 26\ ed[ W[ Flugge[

McGraw!Hill[
Neuber\ H[\ 0852[ Lo�sung des Carothers!Problems mittels Prinzipien der Kraftu�bertragung "Keil mit Moment an der

Spitze#[ Zeitschrift fur Angewandte Mathematik und Mechanik 32\ 100Ð117[



N[G[ Stephen\ P[J[ Wan` : International Journal of Solids and Structures 25 "0888# 234Ð250 250

Stephen\ N[G[\ Wang\ P[J[\ 0855[ Saint!Venant|s principle and the anti!plane wedge[ I[ Mech[ E[ Journal of Strain
Analysis for Engineering Design 20\ 120Ð123[

Sternberg\ E[\ Koiter\ W[ T[\ 0847[ The wedge under a concentrated couple] a paradox in the two!dimensional theory
of elasticity[ Transactions ASME Journal of Applied Mechanics 14\ 464Ð470[ See also the discussion on this by
various authors in "0848# in Transactions ASME Journal of Applied Mechanics 15\ 361Ð363[

Timoshenko\ S[P[\ Goodier\ J[N[\ 0869[ Theory of Elasticity\ 2rd edn[ McGraw!Hill[
Ting\ T[C[T[\ 0873[ The wedge subjected to tractions] a paradox re!examined[ Journal of Elasticity 03\ 124Ð136[
Ting\ T[C[T[\ 0874[ A paradox on the elastic wedge subjected to a concentrated couple and on the Je}eryÐHamel viscous

~ow problem[ Zeitschrift fur Angewandte Mathematik und Mechanik 54\ 077Ð089[
Williams\ M[\ 0846[ On the stress distribution at the base of a stationary crack[ Transactions ASME Journal of Applied

Mechanics 13\ 098Ð003[


